
Live, Laugh, Signal

Dan Klingmann, Staff Software Engineer, Celonis
3rd December, 2025

An in-depth look into Angular Signals

About me

Daniel “Dan” Klingmann

Obsessed about Frontend
Architecture & Performance

Working in frontend since the double
float margin bug was a thing (that’s
2001).

Hobbies include composing music in
my home studio, gaming or working
on an MMO quiz game show.

Where we’re coming from > Reactivity before Signals

- Promises
- Proxies (Vue for example)
- EventEmitters
- RxJS Observables

One problem though…

They’re not well suited for state

Workarounds for state

State management libraries centered around redux

- ngrx
- ngxs

Other state management libraries

Or DIY solutions with services

Signals:
A new* reactive primitive

* Calling Angular v17 new is a stretch but chances are you’re working on enterprise software so you’re
probably stuck with ancient versions of Angular anyways so it might indeed be new for you. Surely you’ve

already convinced management you need to migrate away from AngularJS by now, right? What do you mean
you’re still using JQuery?

What’s the hype about signals?

Signals are lazily evaluated (unless they’re live)

Computed signals are memoized

They’re highly performant

They come included with Angular

They use the Angular Injection Context and thus can be garbage collected
automatically (because we all sometimes forget to unsubscribe, right?)

Oh and…

FREAKING
AWESOME
DEVTOOLS

Types of Signals > signal / WritableSignal

function signal<T>(

 initialValue: T

): WritableSignal<T>

● Initial value
● Can be written to hence returning a WritableSignal
● Can be changed via set(newValue)
● Can be derived via update(oldValue => oldValue + myChange)

Similar to the RxJS BehaviorSubject

Types of Signals > signal / Signal

signalFn.asReadonly = signalAsReadonlyFn.bind(signalFn)

function signalAsReadonlyFn<T>(

 this: SignalGetter<T>

): Signal<T>

● Can be called as signal.asReadonly
● Depends on the existing signal
● Can NOT be written to hence only returning a Signal

Similar to the RxJS Subject.asObservable()

Types of Signals > computed / Signal

function computed<T>(

 computation: () => T

): Signal<T>

● Runs a given computation lazily when accessed
● Can not be written to

Similar to RxJS combineLatest with a mapping function

Types of Signals > linkedSignal / WritableSignal

function linkedSignal<T>({

 source: () => S;

 computation: ComputationFn<S, D>;

}): WritableSignal<D>

● Runs a given computation every time the source signal changes
● Can actually be written to as it’s a WritableSignal

Similar to RxJS switchMap with a mapping function

Omissions

HttpResource - Allows you to call an HTTP endpoint on change of a signal
with complete control over the request (methods, payload, headers)

Resource - Similar, but works with any arbitrary async function

Effect - Kind of the basis for the other above, run any code when
something changes.

But how does that work in Angular?

Disclaimer: This is all taken from source code and interpreted by the author. The intention is to give an
overview of the things Angular does to provide you with some basic understanding of how it works. The signal
implementation of Angular is very well documented and I hope to pique your interest enough to take a look at

the implementation yourself.

It’s a reactive graph.
That’s it.

Thanks for joining my talk. Enjoy the food and drinks.

Reactive Nodes

ALL reactive nodes are created via
Object.create and inherit from the
REACTIVE_NODE[1] object
implementing the ReactiveNode
interface[2].

They then selectively override
some of the properties.

[1] https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L64

[2] https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L112

const REACTIVE_NODE: ReactiveNode = {

 version: 0 as Version,

 lastCleanEpoch: 0 as Version,

 dirty: false,

 producers: undefined,

 producersTail: undefined,

 consumers: undefined,

 consumersTail: undefined,

 recomputing: false,

 consumerAllowSignalWrites: false,

 consumerIsAlwaysLive: false,

 kind: 'unknown',

 producerMustRecompute: () => false,

 producerRecomputeValue: () => {},

 consumerMarkedDirty: () => {},

 consumerOnSignalRead: () => {},

};

https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L64
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L112
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L64
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L112

Angular splits signals into
two roles

Producers

Hold values that can be updated at any time.

signal
computed
linkedSignal
resource

Consumers

Read the values that are stored in producers.

effects
computed
linkedSignal
resource
template

Graph structure

A B C

AB

ABC

Signals can be both, producer AND
consumer.

Signal Computed

Signals on a graph that
are not an end are producers.

Signals on a graph that are not
at the beginning are consumers.

(Computeds at the end theoretically
also produce values that are
probably consumed by a template)

How does Angular know what needs
to be updated?

Dependency tracking

Signals track dependencies in a
linked list of producers using the
ReactiveLink[1] interface

On accessing a signal, it is
checked if the access was
coming from a reactive context[2].

Reactive context means, a
consumer has set itself as active
consumer.

[1] https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L82

[2] https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L213

interface ReactiveLink {

 producer: ReactiveNode;

 consumer: ReactiveNode;

 lastReadVersion: number;

 prevConsumer?: ReactiveLink;

 nextConsumer?: ReactiveLink;

 nextProducer?: ReactiveLink;

}

https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L82
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L213
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L82
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L213

Dependency tracking - Example

S1 and S2 are simple signals
holding a string character

C1 is a computed signal:

() => s1() + s2()

As C1 was not read yet, it doesn’t
have a value and no recorded
dependencies.

A B

Signal Computed

?

S1:1 S2:1

C1:?

Active Consumer: -
Dependencies: -

Dependency tracking - Example

Calling C1 now does the following
(although quite a bit simplified):

Signal Computed

Active Consumer:
Dependencies:

A B

?

S1:1 S2:1

C1:1

- Set itself as active consumer

- Run the computation fn

- First call S1 adding the first
dependency

- Then call S2 adding the
second dependency

- Store and return the value

C1

S1 (lastReadVersion: 1)
S2 (lastReadVersion: 1)

AB

Dependency tracking - Example

Changing the value of S1 now
leads to the following:

*Well come back to epochs later
Signal Computed

A B

AB

S1:1 S2:1

C1:1

Active Consumer:
Dependencies:

- Increase it’s own version

- Increase the epoch*
counter

- Update it’s value

S1 does not know of C1 so it
can’t force an update.

S1:2

C

C1:1

Dependency tracking - Example

Reading C1 now does the
following

Signal Computed

C B

S1:2 S2:1

C1:2

Active Consumer:
Dependencies:

C1

S1 (lastReadVersion: 1)
S2 (lastReadVersion: 1)

- Check lastRead versions
against the dependencies

- See that S1:1 and S1:2 don’t
match so get new value and
run computation again.

- Store new lastReadVersion

- Increase own version S1 (lastReadVersion: 2)

- Set new value

ABCB

Dependency tracking - Example

What if we have another
computed C2 depending on C1?

Let’s access C2 and see what
happens.

Signal Computed

A B

?

S1:1 S2:1

C1:1

?

C2:1

Active Consumer:
Dependencies:

Dependency tracking - Example

First off, C2 sets itself as active
consumer and calls C1.

However, C1 itself does not have a
value yet.

Signal Computed

A B

?

S1:1 S2:1

C1:1

?

C2:1

Active Consumer:
Dependencies:

C2

Dependency tracking - Example

C1 thus sets itself as active
consumer

Signal Computed

A B

?

S1:1 S2:1

C1:1

?

C2:1

Active Consumer:
Dependencies:

C1

S1 (lastReadVersion: 1)
S2 (lastReadVersion: 1)

It then runs its computation first
and accesses S1 and S2 storing it
as dependencies and setting its
value.

After it completes, it sets the
previous consumer back as active
consumer

C2

AB

Dependency tracking - Example

C2 can now get the value from C1
and sets it as dependency.

Let’s change a signal’s value now
again.

Signal Computed

A B

AB

S1:1 S2:1

C1:1

AB

C2:1

Active Consumer:
Dependencies:

C2

C1 (lastReadVersion: 1)

Dependency tracking - Example

We change S1 to have a new
version and now access C2 again.

However, just checking for the
version now doesn’t work.

Angular first checks the version,
then runs the update on the
producer and then runs the check
again.[1]

But what if two computed Signals
depend on a large calculation?

[1] https://github.com/angular/angular/blob/e26aa86aa54a1fcd58869296660633c66898fc94/packages/core/primitives/signals/src/graph.ts#L456

Signal Computed

Active Consumer: C2
Dependencies:

- C1 (lastSeen 1)

C B

CB

S1:2 S2:1

C1:2

CB

C2:2

https://github.com/angular/angular/blob/e26aa86aa54a1fcd58869296660633c66898fc94/packages/core/primitives/signals/src/graph.ts#L456
https://github.com/angular/angular/blob/e26aa86aa54a1fcd58869296660633c66898fc94/packages/core/primitives/signals/src/graph.ts#L456

Dependency tracking - Example

In this example, the computed C1
is a particularly heavy calculation
which has C2 and C3 as
dependents.

Based on the previous example,
you would expect C1 to run
multiple times as it might be stale
leading to expensive
recalculations.

That is, unless we track that
“somehow”.

?

?

C1:1

C2:1

?

C3:1

Introducing:
Epochs

Big fan of the gothic epoch but I digress.

It’s awesome though, JUST LOOK AT THIS ->

Epochs

When a signal’s value is changed[1], it

1. Increases its own version
2. Increases the global epoch
3. Notifies any live consumers of the

change

producerIncrementEpoch is literally
just epoch++

Let’s see how the epoch counter helps
against recalculations.

function signalValueChanged (node)

{

 node.version++;

 producerIncrementEpoch ();

 producerNotifyConsumers (node);

 postSignalSetFn?.(node);

}

[1] https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/signal.ts#L121

https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/signal.ts#L121
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/signal.ts#L121

Epochs

Producers will always call
producerUpdateValueVersion when it
is requested to update its own value.

One of the checks is for the
lastCleanEpoch. If it’s not equal, it will
run the computation again.

The last call simply sets the node’s
dirty flag to false and the
lastCleanEpoch to the current so
calculations in the same epoch are
guaranteed to have the up-to-date
value.

…

if (

 !node.dirty &&

 node.lastCleanEpoch === epoch

) {

 return;

}

…

node.producerRecomputeValue (node)

producerMarkClean (node);

Epochs - Example

Let’s assume we are at epoch 1.

C2 calls C1 and requests an update.

->C1 doesn’t have a value yet

C1 calculates a value and sets its last
clean epoch to 1 and returns the value
to C2 which also sets its last clean
epoch.

AB

AB

C1:1

C2:1

?

C3:1

lCE: 1

lCE: 1

Epoch: 1

Epochs - Example

Now C3 also is called and requests the
value from C1.

C1 now checks if the epoch changed.

As it didn’t, its value is guaranteed to
be up-to-date and no computations
need to run.

C3 is now also at epoch 1.

AB

AB

C1:1

C2:1

AB

C3:1

lCE: 1

lCE: 1 lCE: 1

Epoch: 1

Epochs - Example

Let’s change an upstream Signal. This
will set the epoch to 2.

Accessing C3 will now see that the
epoch changed and ask it’s
dependency to update.

C1 checks the lastSeenVersions of its
own dependencies and then update
accordingly.

No matter if it had to update or not, the
last clean epoch is set again and the
new value returned to C3.

CB

AB

C1:2

C2:1

CB

C3:2

lCE: 2

lCE: 1 lCE: 2

Epoch: 2

How does this actually work in
templates?

Live Signals

Signals like template, effect or resource are live.

Not really lazily evaluated as they’re not actively called by the user

Update via Push/Pull principle to prevent glitches[1]

- Push a dirty value in a notification phase to all tracked consumers
- Consumers then pull the new values evaluating all dependencies

Wait a second…

tracked consumers?

[1] https://github.com/angular/angular/blob/main/packages/core/primitives/signals/README.md#pushpull-algorithm

https://github.com/angular/angular/blob/main/packages/core/primitives/signals/README.md#pushpull-algorithm
https://github.com/angular/angular/blob/main/packages/core/primitives/signals/README.md#pushpull-algorithm

Live Signals - Tracking consumers

A signal that’s live will ALWAYS result in all its dependencies being treated
as live signals so it can receive updates.

For this, producers NEED to know who depends on them thus tracking them
in the consumers linked list.

If a producers with such a dependents value changes, it will mark all live
dependents dirty recursively and calls consumerMarkedDirty[1] on them.

[1] https://github.com/angular/angular/blob/a0ad5d4b2b2a99fb8eee2003393f85c7824c7b72/packages/core/primitives/signals/src/graph.ts#L359

https://github.com/angular/angular/blob/a0ad5d4b2b2a99fb8eee2003393f85c7824c7b72/packages/core/primitives/signals/src/graph.ts#L359
https://github.com/angular/angular/blob/a0ad5d4b2b2a99fb8eee2003393f85c7824c7b72/packages/core/primitives/signals/src/graph.ts#L359

Signals in templates

Special ReactiveLViewConsumer type (basically a big computed)

Attached to the LView of a component

Is always live

Consumes all signals called in the template

Schedules a change detection cycle on consumerMarkedDirty

Change detection cycle checks if the consumer is marked dirty and if it is,
rerenders the template

Template - Initial value example

1. Template sets itself as active
consumer and executes (as
before)

2. Calls C1 which realizes the
consumer is live and adds it as
dependency to consumer.

3. C1 recalculates and thus calls S1
4. S1 realizes C1 is transitively live and

stores it as consumer.

A

A

S1

C1 dirty: false

Template

dirty: false

Template - Update example

1. We now update the value S1
2. S1 sees live consumers and enters

a notification phase, iterating
through consumers and marking
them dirty.

3. C1 gets the notification and
recursively marks the template
dirty

4. The template’s
consumerMarkedDirty function
schedules a new change detection
cycle.

5. Normal update happens

B

A

S1

C1 dirty: true

Template

dirty: true

Where we’re going to (hopefully)

Signals are already a proposed
standard[1] albeit currently in draft

“The current draft is based on design
input from the authors/maintainers
of Angular, Bubble, Ember, FAST,
MobX, Preact, Qwik, RxJS, Solid,
Starbeam, Svelte, Vue, Wiz, and
more…”

One can hope.

[1] https://github.com/tc39/proposal-signals

https://github.com/tc39/proposal-signals
https://github.com/tc39/proposal-signals

Outlook on Signal forms[1]

A new way to create reactive forms
introduced recently.

Allows you to define your form state
in a signal in an easy way including
validation.

Available with Angular v21[2]

[1] https://angular.dev/essentials/signal-forms

[2] https://blog.angular.dev/announcing-angular-v21-57946c34f14b

// TS

interface LoginData {

 email: string;

 password: string;

}

const loginModel = signal<LoginData>({

 email: '',

 password: '',

});

const loginForm = form(loginModel);

// HTML

<input type="text" [field]="loginForm.name" />

<input type="email" [field]="loginForm.email" />

https://angular.dev/essentials/signal-forms
https://blog.angular.dev/announcing-angular-v21-57946c34f14b
https://angular.dev/essentials/signal-forms
https://blog.angular.dev/announcing-angular-v21-57946c34f14b

If you want to dive in yourself…

Most of the reactive code can be found in
/packages/core/primitives/signals

Wrappers for common usage of signals are in
/packages/core/src/render3/reactivity

If you’re brave enough and see a use-case, you could even implement
your own custom signals on top of this.

For example, why not try something with WebSockets?

Q&A

Thank you.

