ce@ﬁs

Live, Laugh, Signal . /

An in-depth look into Angular Signals . , } ‘

Dan Klingmann, Staff Software Engineer, Celonis
3rd December, 2025

About me

Daniel “Dan” Klingmann

Obsessed about Frontend
Architecture & Performance

Working in frontend since the double
float margin bug was a thing (that's
2001).

Hobbies include composing music in
my home studio, gaming or working
on an MMO quiz game show.

Where we're coming from > Reactivity before Signals

- Promises

- Proxies (Vue for example)
- EventEmitters

- RxJS Observables

One problem though..

They’re not well suited for state

Workarounds for state

State management libraries centered around redux

- ngrx
- NQgxs

Other state management libraries

Or DIY solutions with services

Signails:
A new* reactive primitive

* Calling Angular v17 new is a stretch but chances are you're working on enterprise software so you're
probably stuck with ancient versions of Angular anyways so it might indeed be new for you. Surely you've
already convinced management you need to migrate away from AngularJS by now, right? What do you mean
you're still using JQuery?

What's the hype about signals? @

Signals are lazily evaluated (unless they're live)
Computed signals are memoized

They're highly performant

They come included with Angular

They use the Angular Injection Context and thus can be garbage collected
automatically (because we all sometimes forget to unsubscribe, right?)

Oh and..

i< [0 Elements Console Sources

R top v Components

app-root == $ngd

app-root

Profiler

Network Performance

Injector Tree

Memory

Application Privacy and security

s1 s2
new ngn

i 4 V »
app-root +

Lighthouse

[Y N

Recorder Angular

X | app-root v

app-root
Properties

cl: Readonly Signal("C1:CB") £ B
c2: Readonly Signal("C2:C1:CB") & B3
c3: Readonly Signal("C3:C1:CB") & (3
s1: Signal("C") s

s2: Signal("B") & (I

title: Signal("signals")

- W r N W

@ X
® @

Types of Signals > signal [WritableSignal @

function signal<T> (

initialValue: T

) : WritableSignal<T>

Initial value

Can be written to hence returning a WritableSignal

Can be changed via set(newValue)

Can be derived via update(oldValue => oldValue + myChange)

Similar to the RxJS BehaviorSubject

Types of Signals > signal [Signal @

signalFn.asReadonly = signalAsReadonlyFn.bind(signalFn)

signalAsReadonlyFn<T> (

this: SignalGetter<T>

Signal<T>

e Can be called as signal.asReadonly
e Depends on the existing signal
e Can NOT be written to hence only returning a Signal

Similar to the RxJS Subject.asObservable()

Types of Signals > computed [Signal @

computed<T> (

computation: () T

) : Signal<T>

e Runs a given computation lazily when accessed
e Can not be written to

Similar to RxJS combineLatest with a mapping function

Types of Signals > linkedSignal / WritableSignal @

function linkedSignal<T> ({

source: () => S;

computation: ComputationFn<S, D>;

WritableSignal<D>

e Runs a given computation every time the source signal changes
e Can actually be written to as it's a WritableSignal

Similar to RxJS switchMap with a mapping function

Omissions @

HttpResource - Allows you to call an HTTP endpoint on change of a signal
with complete control over the request (methods, payload, headers)

Resource - Similar, but works with any arbitrary async function

Effect - Kind of the basis for the other above, run any code when
something changes.

©

But how does that work in Anhgular?

Disclaimer: This is all taken from source code and interpreted by the author. The intention is to give an
overview of the things Angular does to provide you with some basic understanding of how it works. The signal
implementation of Angular is very well documented and | hope to pique your interest enough to take a look at

the implementation yourself.

It's a reactive graph.
That's it.

Thanks for joining my talk. Enjoy the food and drinks.

Reactive Nodes

ALL reactive nodes are created via
Object.create and inherit from the
REACTIVE _NODEY object
implementing the ReactiveNode
interfacel2.

They then selectively override
some of the properties.

REACTIVE NODE: ReactiveNode = ({
version: 0 as Version,
lastCleanEpoch: 0 as Version,
dirty:
producers:
producersTail:
consumers:
consumersTail:
recomputing:
consumerAllowSignalWrites:
consumerIsAlwaysLive:

kind: 'unknown',

producerMustRecompute: ()

producerRecomputeValue: () {},
consumerMarkedDirty: ()

consumerOnSignalRead: ()

https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L64
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L112
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L64
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L112

Angular splits signals into
two roles

Producers Consumers

Hold values that can be updated at any time. Read the values that are stored in producers.
signal effects

computed computed

linkedSignal linkedSignal

resource resource

template

Graph structure

Signals can be both, producer AND

consumer. R

Signals on a graph that T TR AT g

are not an end are producers:.‘ _______ S W SN A |
______ »

Signals on a graph that are not ,

(Computeds at the end theoretically %
also produce values that are ;
probably consumed by a template)

©

How does Angular know what needs
to be updated?

Dependency tracking

Signals track dependencies in a
linked list of Elroducers using the |
Reactivelink! interface producer: ReactiveNode;

Reactivelink {

. . . consumer: ReactiveNode;
On accessing a SlgnCII, It Is Y -V

checked if the access was lastReadVersion: number;

coming from a reactive context!2. , ,
prevConsumer?: Reactivelink;

Reactive context means, a

consumer has set itself as active
consumer. nextProducer?: Reactivelink;

nextConsumer?: Reactivelink;

https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L82
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L213
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L82
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/graph.ts#L213

Dependency tracking - Example

ST S2:1

S1.and S2 are simple signals
holding a string character

C1is a computed signal:

Cl?
() =>s1() + s2() @
As C1 was not read yet, it doesn’t
have a value and no recorded
dependencies. Active Consumer: -

Dependencies: -

o Signal o Computed

Dependency tracking - Example

Calling C1 now does the following
(although quite a bit simplified):

Set itself as active consumer
Run the computation fn

First call S1 adding the first
dependency

Then call $2 adding the
second dependency

Store and return the value

ST S2:1

Active Consumer: CI1
Dependencies:

s1 (lastReadVersion: 1)
s2 (lastReadVersion: 1)

o Signal o Computed

Dependency tracking - Example

Changing the value of S1 now
leads to the following:

- Increase it's own version

- Increase the epoch*
counter

- Update it's value

S1 does not know of C1so it
can’t force an update.

*Well come back to epochs later

S1:2 S2:1

Active Consumer:
Dependencies:

o Signal o Computed

Dependency tracking - Example

Reading C1 now does the
following

Check lastRead versions
against the dependencies

See that S1:1 and S1:2 don't
match so get new value and
run computation again.

Store new lastReadVersion

Increase own version

Set new value

Active Consumer: C
Dependencies:

s1 (lastReadVersion: 2)
S$2 (lastReadVersion: 1)

o Signal o Computed

Dependency tracking - Example

ST S2:1

What if we have another
computed C2 depending on C1?
Let's access €2 and see what
: Cli : C21

happens.
Active Consumer:

Dependencies:

o Signal o Computed

Dependency tracking - Example

ST S2:1
First off, C2 sets itself as active
consumer and calls C1.
However, C1 itself does not have a
vdlue yet. C1 c21

Active Consumer: C2
Dependencies:

o Signal o Computed

Dependency tracking - Example

C1 thus sets itself as active
consumer

It then runs its computation first
and accesses S1and S$2 storing it
as dependencies and setting its
value.

After it completes, it sets the
previous consumer back as active
consumer

ST S2:1

Cli C21

Active Consumer: C2
Dependencies:

s1 (lastReadVersion: 1)
s2 (lastReadVersion: 1)

o Signal o Computed

Dependency tracking - Example

C2 can now get the value from C1
and sets it as dependency.

Let’'s change a signal’s value now
again.

ST S2:1

Cli C21

Active Consumer: C2
Dependencies:

C1 (lastReadVersion: 1)

o Signal o Computed

Dependency tracking - Example

S1:2 S2:
We change S1to have a new
version and now access C2 again.
However, just checking for the
version now doesn’t work. cl2 c2:2

Angular first checks the version, @ @

then runs the update on the

producer and then runs the check

CZIgCIih.lll Active Consumer: C2
Dependencies:

But what if two computed Signals - Cl{lostseen)

depend on a large calculation?

OSignoI
[1] https://github.com/angular/angular/blob/e26aa86aa54alfcd588692966606 66898fc94/packages/core/primitives/signa Qrap

Computed

https://github.com/angular/angular/blob/e26aa86aa54a1fcd58869296660633c66898fc94/packages/core/primitives/signals/src/graph.ts#L456
https://github.com/angular/angular/blob/e26aa86aa54a1fcd58869296660633c66898fc94/packages/core/primitives/signals/src/graph.ts#L456

Dependency tracking - Example

In this example, the computed C1
is a particularly heavy calculation
which has €2 and C3 as
dependents.

Based on the previous example,
you would expect C1 to run
multiple times as it might be stale
leading to expensive
recalculations.

That is, unless we track that
“somehow”.

Introducing:
Epochs

Big fan of the gothic epoch but | digress.

It's awesome though, JUST LOOK AT THIS -> _{

Epochs

When a signal’s value is changed, it

1. Increases its own version

2. Increases the global epoch

3. Notifies any live consumers of the
change

producerincrementEpoch is literally
just epoch++

Let's see how the epoch counter helps
against recalculations.

[1] https://qithub.com/angular/angular/blob b2efd7cef778e 62ba51212b3585a33f2/packages/core/p

©

function signalValueChanged (node)

{

node.version++;
producerIncrementEpoch () ;
producerNotifyConsumers (node) ;

postSignalSetFn ?. (node) ;

https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/signal.ts#L121
https://github.com/angular/angular/blob/f35b2ef47cef778e35c3f62ba51212b3585a33f2/packages/core/primitives/signals/src/signal.ts#L121

Epochs

Producers will always call
producerUpdateValueVersion when it
is requested to update its own value.

One of the checks is for the
lastCleanEpoch. If it's not equal, it will
run the computation again.

The last call simply sets the node’s
dirty flag to false and the
lastCleanEpoch to the current so
calculations in the same epoch are
guaranteed to have the up-to-date
value.

if (
'node.dirty &&

node.lastCleanEpoch === epoch

node .producerRecomputeValue (node)

producerMarkClean (node) ;

Epochs - Example

Let’'s assume we are at epoch 1.
C2 calls C1 and requests an update.
->C1 doesn’'t have a value yet

C1 calculates a value and sets its last
clean epoch to 1 and returns the value
to C2 which also sets its last clean
epoch.

Epochs - Example

Now €3 also is called and requests the
value from CI1.

C1 now checks if the epoch changed.

As it didn't, its value is guaranteed to
be up-to-date and no computations
need to run.

C3 is now also at epoch 1.

Epochs - Example

Let’'s change an upstream Signal. This
will set the epoch to 2.

Accessing €3 will now see that the
epoch changed and ask it's
dependency to update.

C1 checks the lastSeenVersions of its
own dependencies and then update
accordingly.

No matter if it had to update or not, the
last clean epoch is set again and the
new value returned to C3.

How does this actually work in
templates?

Live Signals

Signals like template, effect or resource are live.
Not really lazily evaluated as they’re not actively called by the user
Update via Push/Pull principle to prevent glitches!

- Push a dirty value in a notification phase to all tracked consumers
- Consumers then pull the new values evaluating all dependencies

Wait a second...

tracked consumers?

https://github.com/angular/angular/blob/main/packages/core/primitives/signals/README.md#pushpull-algorithm
https://github.com/angular/angular/blob/main/packages/core/primitives/signals/README.md#pushpull-algorithm

Live Signals - Tracking consumers @

A signal that's live will ALWAYS result in all its dependencies being treated
as live signals so it can receive updates.

For this, producers NEED to know who depends on them thus tracking them
in the consumers linked list.

If a producers with such a dependents value changes, it will mark all live
dependents dirty recursively and calls consumerMarkedDirty!! on them.

https://github.com/angular/angular/blob/a0ad5d4b2b2a99fb8eee2003393f85c7824c7b72/packages/core/primitives/signals/src/graph.ts#L359
https://github.com/angular/angular/blob/a0ad5d4b2b2a99fb8eee2003393f85c7824c7b72/packages/core/primitives/signals/src/graph.ts#L359

Signals in templates @

Special ReactiveLViewConsumer type (basically a big computed)
Attached to the LView of a component

Is always live

Consumes all signals called in the template

Schedules a change detection cycle on consumerMarkedDirty

Change detection cycle checks if the consumer is marked dirty and if it is,
rerenders the template

Template - Initial value example

1. Template sets itself as active
consumer and executes (as
before)

2. Calls €1 which realizes the

consumer is live and adds it as

dependency to consumer.

C1 recalculates and thus calls S1

S1 realizes Cl is transitively live and

stores it as consumer.

B w

e dirty: false

Template

dirty: false

Template - Update example

—
.

We now update the value S1

S1 sees live consumers and enters
a notification phase, iterating
through consumers and marking
them dirty.

C1 gets the notification and
recursively marks the template
dirty

The template’s
consumerMarkedDirty function
schedules a new change detection
cycle.

Normal update happens

e dirty: true

Template

dirty: true

Where we're going to (hopefully)

SigﬂCIlS are Oll’@gdy a pI’Op(.)SGd s JavaScript Signals standard proposal [
standard! albeit currently in draft o

TC39 proposal champions: Daniel Ehrenberg, Yehuda Katz, Jatin Ramanathan, Shay Lewis, Kristen
Hewell Garrett, Dominic Gannaway, Preston Sego, Milo M, Rob Eisenberg

”T h e C u rre nt d rO ft I S bO S e d O n d e S I g n Original authors: Rob Eisenberg and Daniel Ehrenberg SIGNALS
M 1 M This document describes an early common direction for signals in JavaScript, similar to the
I n p u t f ro m t h e G Ut h O rS / m O I ntO I n e rS Promises/A+ effort which preceded the Promises standardized by TC39 in ES2015. Try it for yourself, using a

polyfill.

Of A n g u I G r’ B u b b I e’ E b e r’ FA S T’ Similarly to Promises/A+, this effort focuses on aligning the JavaScript ecosystem. If this alignment is successful,
M b X P t M k R J S S I M d then a standard could emerge, based on that experience. Several framework authors are collaborating here on a
O / re O C 7 QWI Y X 7 O I Vi common model which could back their reactivity core. The current draft is based on design input from the
. authors/maintainers of Angular, Bubb r, Fi X, Preac ' arl N: lue
Starbeam, Svelte, Vue, Wiz, and
Differently from Promises/A+, we're not trying to solve for a common developer-facing surface API, but rather the

n
I I l O re eee precise core semantics of the underlying signal graph. This proposal does include a fully concrete API, but the API
is not targeted to most application developers. Instead, the signal API here is a better fit for frameworks to build on
top of, providing interoperability through common signal graph and auto-tracking mechanism.

O n e C O n h O p e The plan for this proposal is to do significant early prototyping, including integration into several frameworks,
o

before advancing beyond Stage 1. We are only interested in standardizing Signals if they are suitable for use in
practice in multiple frameworks, and provide real benefits over framework-provided signals. We hope that
significant early prototyping will give us this information. See "Status and development plan" below for more
details.

< - C

oeam,

[1] https://qithub.com/tc39/proposal-signals

https://github.com/tc39/proposal-signals
https://github.com/tc39/proposal-signals

Outlook on Signal forms!

A new way to create reactive forms
introduced recently. Loginbata {

email: string;
Allows you to define your form state IR

in a signal in an easy way including K
validation.

loginModel = signal<LoginData> ({
email: "'

password: ''

Available with Angular v21i2 .

loginForm = form(loginModel) ;

// HTML

<input type="text" [field]="loginForm.name" />

<input type="email" [field]="loginForm.email" />

https://angular.dev/essentials/signal-forms
https://blog.angular.dev/announcing-angular-v21-57946c34f14b
https://angular.dev/essentials/signal-forms
https://blog.angular.dev/announcing-angular-v21-57946c34f14b

If you want to dive in yourself...

Most of the reactive code can be found in
[packages/core/primitives/signals

Wrappers for commmon usage of signals are in
[packages/core/src/render3/reactivity

If you're brave enough and see a use-case, you could even implement
your own custom signals on top of this.

For example, why not try something with WebSockets?

Q&A

©

Thank you.

